APIEMS2019 The 20 th Asia Pacific Industrial Engineering & Management Systems Conference, Kanazawa

No.85

Design and Evaluation of Project Organization based on Communication Links

December 4, 2019

Nobuaki Ishii, Kanagawa University, Japan Masaaki Ohba, Nihon University, Japan

Background & Motivation

- Project is <u>a temporary work</u> undertaken by <u>a</u> <u>temporary organization</u> to create a unique product, service, or result.
- Communication among project organization is a key for the project success.
 - Especially when the organization includes external entities, like joint venture partners, subcontractors.

Objectives

In this presentation, we present A method of design and dvaluation of project organization based on <u>Communication Links</u> including external entities.

A structure of the communication links in Project Organization

B2

B6

B7

B0

B5

B1

B4

B3

The communication links are <u>channels or pathways</u> through which entities can communicate, access and distribute information.

Assumption

The information created by the entity playing a more important role in the project has higher value,

The information created by each entity should be referred to in accordance with the value of information.

A structure of communication links among organization 4

Evaluation of the structure of the communication links in a project organization

Overview of the evaluation method

Calculating the rate of its own information referred to by other entities (RIR)

Eigen vector **R** of matrix **Q** is used as the value of RIR including informal communication links.

➔ Similar idea of <u>Ranking Web Page</u> by using <u>a</u> <u>transition matrix</u>

$$\mathbf{Q} = \alpha \mathbf{M} + (1 - \alpha) \mathbf{N} (\mathbf{O} - \mathbf{I})$$
$$\mathbf{R} = \mathbf{C} \mathbf{Q} \mathbf{R}$$

- R: Eigenvector of the matrix Q representing the structure of information links,
- **Q**: A square matrix representing the structure of communication links including informal communication.
- *M* : A square matrix representing the structure of communication links <u>without informal communication</u>,
- **N**, **O**, **I** = A square matrices to identify companies of joint venture.
- α : Scaling parameter between 0.0 to 1.0 representing the rate of formal communication among entities.
 7

Calculating the value of information created by each entity (VIE)

Evaluating VIE is <u>a decision making problem</u> which provides scores to the entities in the order of importance.

Determining VIE is a complex and multi-criteria decision problem to be examined in consideration of <u>several factors</u>, <u>such as resource availability</u>, technical feasibility, lead-time, <u>and so on</u>.

The value of the <u>Work Package (WP</u>) carried out by the entity can be defined as proportional to the value of information produced by each entity.

WP based methodology for determining VIE.

Example of WP based VIE

- WP is the lowest level of the Work Breakdown Structure (WBS).
- VIE is calculated as a vector V based on the value of WP of each entity using the corresponding table.

Evaluation index (POA: Project Organization Assessment)

- ✓ Evaluation index POA indicates the difference between *R* and *V* of each entity.
- \checkmark POA is calculated as the norm between *R* and *V*.
- ✓ POA=0 indicates the ideal structure of communication links in organization.

$$POA = |R - V| = \sqrt{\sum_{i=1 \sim n} (r_i - v_i)^2}$$

- **R:** Eigenvector of the matrix **Q** representing the structure of communication links.
- **V**: Vector of the relative value of information produced by each entity *i* in organization.
- r_i : Element of **R**, $r_i \ge 0.0$, $\Sigma_{i=1,n}$ $r_i=1.0$
- v_i : Element of **V**, $v_i \ge 0.0$, $\Sigma_{i=1,n} v_i = 1.0$.
- *n* is the total number of CS entity.

A method of project organization design based on the communication links

Present a design method, which searches a structure of the communication links that minimizing the index POA.

First stage: Create an initial structure of communication links.

based on the organization hierarchy

Method Second stage: Modify initial communication links to make POA smaller

- Step 1: Calculate the POA index of the initial structure of the communication links created in the first stage.
- Step 2: Attempt to search the structure of the communication links that makes POA index as small as possible by applying the following heuristic rules repeatedly.
 - R1: Modify *R* by changing the relative importance of communication links
 - R2: Modify **R** by adding a new link from the lower rank entity in the project organization hierarchy
 - R3: Modify V by changing the work packages carried out in each entity.

Problem Setting

Example joint venture formation (Formal reporting lines of the)

Cases of numerical examples

Case	Description
Case 0	Initial structure of communication links.
Case 1	Relative importance of communication links of
	Case 0 is modified by the heuristic rule R1.
Case 2	Structure of communication links of Case 1 is
	modified by the heuristic rule R2.
Case 3	Structure of communication links of Case 2 is
	modified by the heuristic rule R3. ¹⁵

Problem Setting

Correspondence Table (Case 0, Case 1, Case 2)

Process			l	Desig	n		I	Procui	remen	nt	Construction						
Work package		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Lowest entity in organization	A4		1														
	A5	1									Ś	То	be	char	ngeo	d in	
	A6								1	1	フ	Ca	ise (3			
	A7						1	1	•		•						
	A8												1				
	A9											1					
	A10										1						
	B3	1			1												
	B4			1		1											
	B5										1					1	
	B6														1		
	B7													1			

Case 0: Initial structure of the communication links **POA=0.423**

- <u>The bidirectional communication links</u> are determined between entities of each formal reporting line.
- If more than two entities are assigned to a work package, binominal communication links are added among those entities. 17

Case 0: Modified Communication Matrix Q

	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B0	B1	B2	B3	B4	B5	B6	B7			
A0	0	0.3	0.3	0.23	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.28	0	0	0	0	0	0	0			
A1	0.23	0	0.02	0.02	0.87	0.44	0.02	0.02	0.02	0.02	0.02	0	0	0	0	0	0	0	0			
A2	0.23	0.02	0	0.02	0.02	0.02	0.87	0.87	0.02	0.02	0.02	0	0	0	0	0	0	0	0			
A3	0.23	0.02	0.02	0	0.02	0.02	0.02	0.02	0.87	0.87	0.44	0	0	0	0	0	0	0	0			
A4	0.02	0.3	0.02	0.02	0	0.02	0.02	0.02	0.02	0.02	0.02	0		0	0	0	0	0	ل_م_			
A5	0.02	0.3	0.02	0.02	0.02	0	0.02	0.02	0.02	0.02	0.02	0	Communication links									
A6	0.02	0.02	0.3	0.02	0.02	0.02	0	0.02	0.02	0.02	0.02	0	from Company B to A									
A7	0.02	0.02	0.3	0.02	0.02	0.02	0.02	0	0.02	0.02	0.02	0	0	0	0	0	0	0				
A8	0.02	0.02	0.02	0.23	0.02	0.02	0.02	0.02	0	0.02	0.02	0	0	0	0	0	0	0	0			
A9	Company A				0.02	0.02	0.02	0.02	0	0.02	0	0	0	0	0	0	0	0				
A10	0.02 0.02 0.02 0.23 0			0.02	0.02	0.02	0.02	0.02	0.02	0	0	0	0	0	0	0.43	0	0				
B0	0.21	0	0	0	0	0	0	0	0	0	0	0	0.3	0.23	0.02	0.02	0.02	0.02	0.02			
B1	0	0	0	0	0	0	0	0	0	0	0	0.3	0	0.02	0.45	0.87	0.02	0.02	0.02			
B2	0	0	0	0	0	0	0	0	0	0	0	0.3	0.02	0	0.02	0.02	0.45	0.87	0.87			
B3	0	0	0	0	0	0.43	0	0	0	0	0	0.02	0.3	0.02	0	0.02	0.02	0.02	0.02			
B4							inka	0	0	0	0	0.02	0.3	0.02	0.02	0	0.02	0.02	0.02			
B5	from Compony A to B								0.43	0.02	0.02	0.23	0.02	0.02	0	0.02	0.02					
B6						уд			0	0	0	0.02	0.02	0.23	0.0	om	par	ny E	⅃ .₀ <mark>2</mark>			
B7	0	0	0	0	0	0	0	0	0	0	0	0.02	0.02	0.23	0.02	0.02	0.02	0.02	0			

 $\boldsymbol{Q} = \alpha \boldsymbol{M} + (1 - \alpha) \boldsymbol{N} (\boldsymbol{O} - \boldsymbol{I})$

Evolution of the initial structure of communication links by heuristic rules.

New communication links added by Rule 2 in Case 2 ¹⁹

POA: Improved by applying heuristic rules

- A method of design and evaluation of project organization based on the structure of the communication links is developed.
- ✓ <u>The performance of the design method</u> is demonstrated via numerical experiments using a simple project organization model.

Further investigations

- The method that integrates diverse factors, such as cost, risk, technical feasibility, and so on, should be developed.
- The heuristic rules to search the appropriate structure of communication links and an algorithm to apply the rules effectively should be developed.

Thank you for your attention.