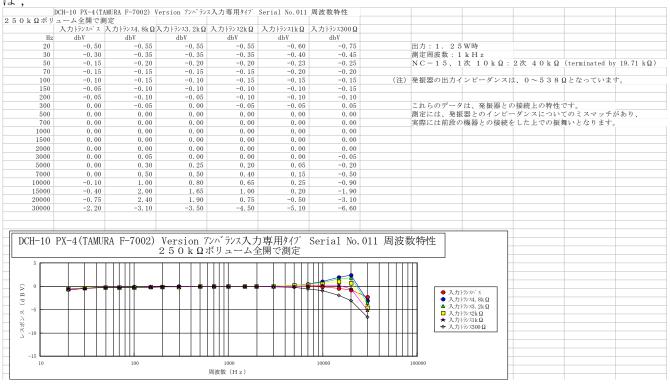
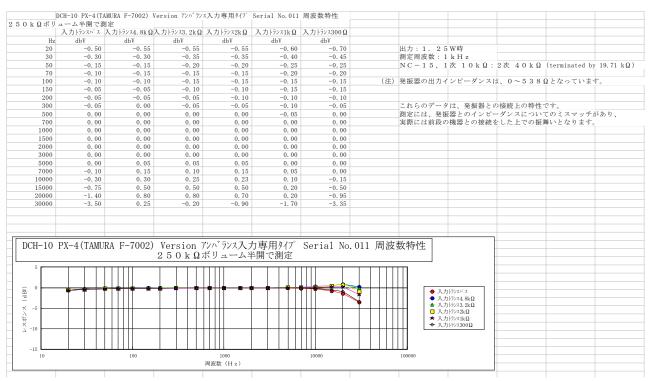

DCH-10 POWER AMPLIFIER

Technical Information

The 2'nd Release PX4 Version 基本特性


§入出力特性

以下のように最大出力は4Wです:

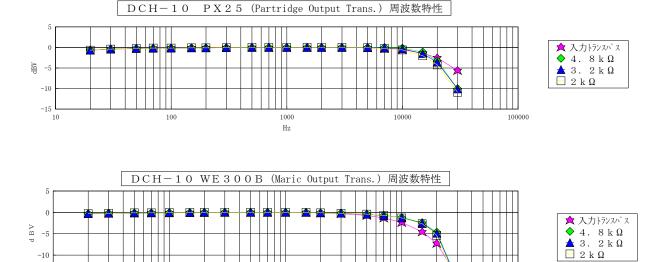

§周波数特性

この製作例では、 $15 \text{ k} \sim 20 \text{ kHz}$ での減少を補正する為、入力トランス 2 次側のインピーダンス=100 k Ω に対して、250 k Ω の ボリュームを使用しています. 入力インピーダンスの違いにより,次のように特性が変化します. ボリューム全開時の特性

となっています.

又,周波数特性はボリュームの位置によって特性が変化します. ボリューム半開時の特性は;

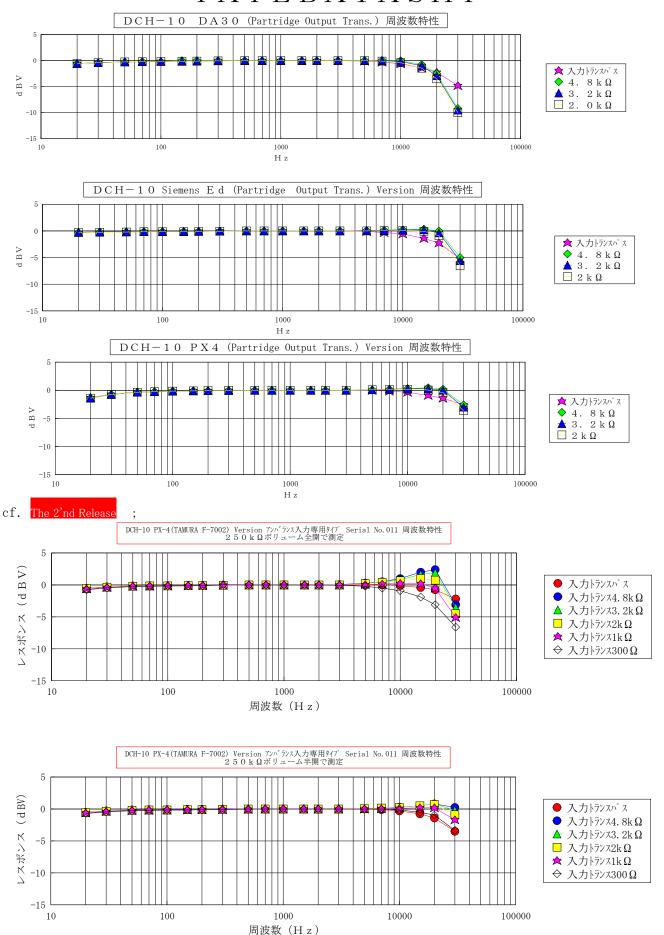
となっています. 以上の測定結果は,測定系の特性に応じたものであることにご注意下さい. 実際には,組み合わせるプリアンプ等の出力インピーダンスにより特性は変化します. 次のTechnical Information をご参照下さい:


「<mark>The 2'nd Release</mark> <u>P X 4 Ver.</u> + <u>L P — 1 Standard Ver.</u> インピーダンスマッチング」

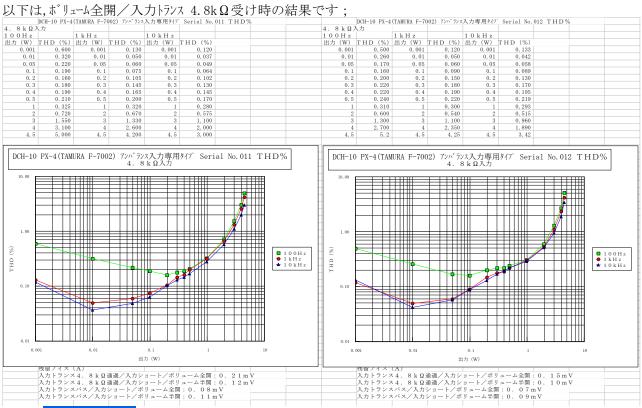
比較の為,以下にThe 1'st Releaseの各アプリケーションでのデータを示します;

100

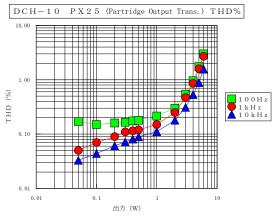
-15


10

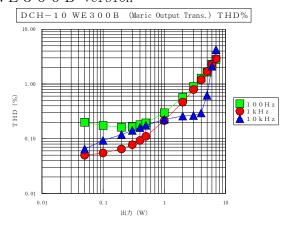
1000


10000

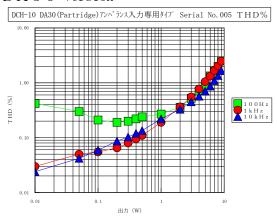
100000

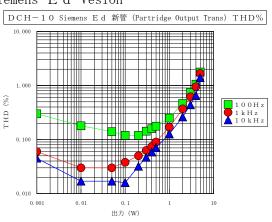

いずれも,高域の特性は最終的に聴感により選択したものです. 低域はすべてのアプリケーションでほぼフラットです.

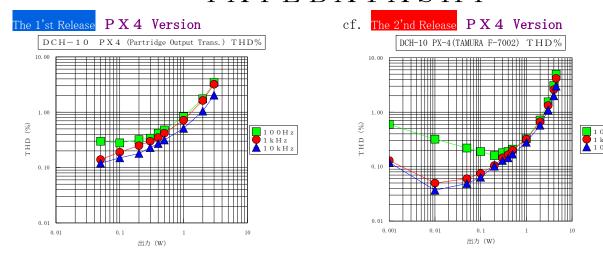
§歪率特性(THD%)



以下にThe 1'st Releaseの各アプリケーションでのデータを示します.いずれもボリューム全開/入力トランス 4.8k Ω 受け時の結 果です;


PX25 Version


WE300B Version



DA30 Version

Siemens Ed Vesion

PX4 Version は、The 2'nd Releaseの方が改善されています. いずれもループ負帰還・カソード負帰還はかけていません.

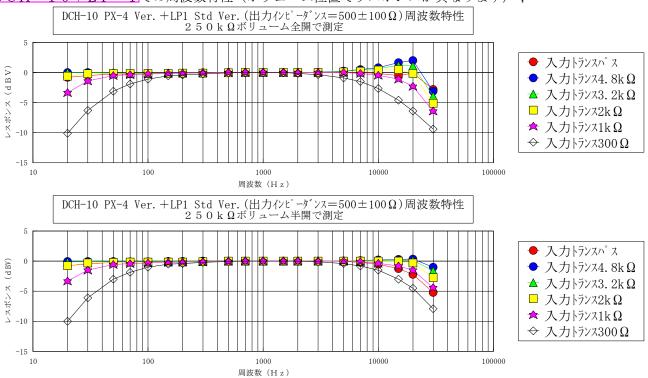
アプリケーション間の比較

		The 1'st Release WE 3 0 0 B Western	The 1'st Release P X 2 5 GEC トーム	The 1'st Release DA30 GECトーム	The 1'st Release E d Siemens 新管	The 2'nd Release PX4 Marconi ドーム
最大出力(W)		7 7	6 6	9 9	5 5	4 4
プレート電圧 (V)		3 6 8 3 5 7	3 7 6 3 7 2	3 <u>6</u> 4	2 7 8 2 7 6	2 8 5 2 8 7
THD% (1W出力時, 2台のデータ)	100Hz	0. 265 0. 298	0. 190 0. 215	0.360 0.350	0. 245 0. 250	0. 3 2 5 0. 3 1 0
	1kHz	0. 178 0. 215	0. 120 0. 150	0. 190 0. 130	0. 151 0. 170	0. 320 0. 300
	10kHz	0. 190 0. 226	0. 185 0. 111	0. 220 0. 305	0. 147 0. 127	0. 280 0. 293

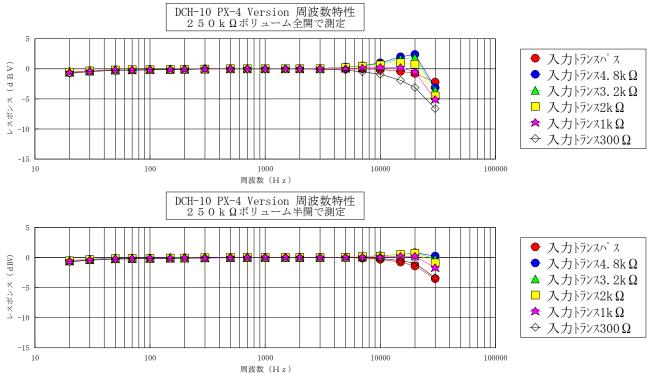
²組の数値は、上段が右チャンネル、下段が左チャンネルです.

音色については、各アプリケーションにおいて最良となるように調整しています. PX4 Marconi Versionは、TAMURA パーマロイコア出力トランス を採用することにより、冴えの或る音色となっています.

The 1'st Release のアプリケーションは,パーツが同一であれば The 2'nd Release のシャーシ上で同レベルの特性を 持ったものとして製作できます.

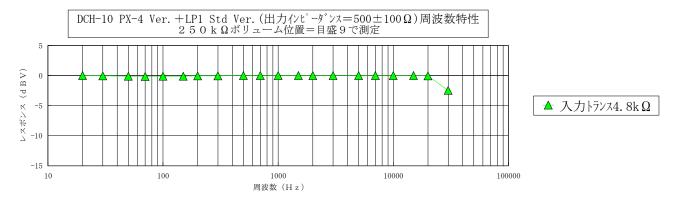

TATEBAYASHI DCH-10 POWER AMPLIFIER

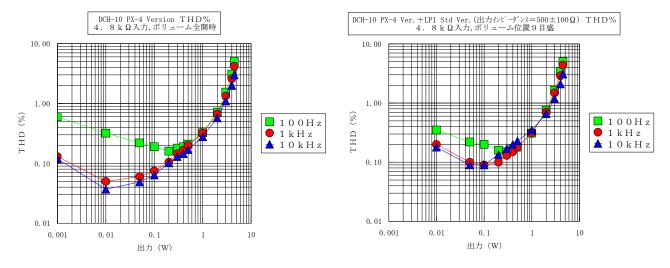
Technical Information


The 2'nd Release PX4 Ver. +LP-1 Std. Ver. (出力インピーダンス=500±100Ω) インピーダンスマッチング

入力トランス受けで本機を使用する場合、出力側機器の出力インピーダンスとの兼ね合いで特性が大きく異なりま 以下に、<u>出力インピーダンス 500±100Ω</u> 仕様のTATEBAYASHI 製 プリアンプ、<u>LP-1Standard Version</u> と 尚, LP-1は単独で、20Hzで-0.5dB, 20kHzで-0.1dBです。 の接続における周波数特性を示します.

DCH-10+LP-1での周波数特性(ボリューム位置でリスポンスが異なります);


これらは,DCH-10単独で測定された次のデータと異なります(特に低域のリスポンスに注意);


(注) 半開・・・目盛=7

DCH-10単独での測定データでは、特に入力トランス1 k Ω 、300 Ω 受けの場合の低域で減衰傾向がありません。 これは、測定系の発振器の出力インピーダンスがプリアンプの出力インピーダンスと異なっている為です。 又、入力トランスの2次側に並列使用されている250 k Ω 音量用ボリュームの開閉位置により、高域側リスポンスが変化しています。 このように、入力トランスを使用する時には、出力側機器との間のインピーダンス マッチングについてあらかじめ知見を得ておく必要があります。

本機+LP-1 Standard Version を使用して、最もフラットな周波数特性を得るには4.8 k Ω 受けでボリューム位置を目盛=9にした場合です(この時の増幅率=33 d BV);

この時の歪率(THD%)を,DCH-10単独での測定結果と合わせて以下に示します;

出力 0.3 W以下については、プリアンプ側の残留ノイズ特性が増幅されて(約33dB)データーを悪化させています. 残留ノイズの影響が少ない 0.2 W以上の出力では、プリアンプの歪率<<パワーアンプの歪率である為、ほぼ同等の結果となっています.

実際のオーディオシステムにおいては、部屋の特性をも含めて、構成するすべての機器の特性の組み合わせで 再生音の特性が決まって来ることに留意しなければなりません.

最終的には、データで聴くのではなく、耳で聴くことが確実なことになります.

本機+LP-1 Standard Version (<u>出力インピーダンス=500±100Ω仕様</u>)では;

入力トランス Pass, -1, -2, -3各減衰位置, ボリューム位置は適宜

入力トランス 4.8 k Ω , ボリューム目盛9

入力トランス 3. $2k\Omega$, ボリューム半開

が周波数特性は良好です. 歪率は、これらの条件にはあまり影響されません。

耳により,適宜条件を変えて音質の変化を楽しむことが,設計の目標ではあります.